Model driven integration architecture for IO G2 information

Reference Semantic Model alignment to ISO 15926

Integrated Operations in the High North – Joint Industry Project

Frode Myren Senior Certified Executive IT Architect IBM myren@no.ibm.com

Dr. Udo Pletat Senior Certified IT Specialist IBM pletat@de.ibm.com Johan W. Klüwer Principal Specialist DNV Johan.Wilhelm.Kluewer @dnv.com

Content

- Background
 - Owner / operator requirements
- Reference Architecture
 - Conceptual Reference Architecture for IO G2
 - The IBM Integrated Information Framework
- Reference Semantic Model
 - Integrating information model for the oil&gas industry
- RSM alignment to ISO15926
 - RSM as a Reference Data Library module
 - Providing ISO15926 data from the IIF/RSM

StatoilHydro TAIL-IO R&D Programme - Operational reality

- Large number of different applications. Each instance with own unique reference and data model. Example:
 - Real Time historians / IMS
 Systems One for each asset
 - Hydro Carbon Accounting systems - One for each asset / license

- Challenges
 - Lost volumes
 - Inefficient operation & maintenance

Global Operations Support Centers

StatoilHydro IBM

SKF

- Incidents
- sabul Sabul Sabul Sabul Sabul Sagar A Sagar A Sagar B Sagar C Suffare B Suffare A Suffare B Suff
- Complex views spanning divisions/plants/process areas requires new "one-off" application developments.
- © IBM 3

The current situation

- complexity is increasing Integrated Operations in the High North - Joint Industry Project

IOHN

Draft Reference Architecture for OLF Integrated Operations Generation 2 Version 1.0 *)

Integrated Operations in the High North – Joint Industry Project

IOH

•Current EAI/ESB technologies are inadequate

The Service patterns

IEEE S3: A Service-Oriented Reference Architecture, Arsanjani et al.

The Integration pattern within the architecture IOHN Integrated Operations in the High North – Joint Industry Project PRODUCTION NEW PLAN DRILLING EQUIPMENT MONITOR EXECUTE COMPOSITE PROGRAM OPTIMIZATION FAULT EQUIPMENT MAINTENANCE TURNAROUND **APPLICATIONS** PLANNING DETECTION CONDITION **OPERATIONS** Orchestration **Enterprise Services Bus** Mediations Process Svcs Integration Pattern Services Pattern Semantic Mode REST Web Information **Services Integration** Services Services As a Service Communications Direct OPC Publish Event connection Integration Client+Server Subscribe processing Router Broker DCS. PLC & Rotating Facility Maintenance Engineering Equipment and EXISTING Equipment Monitoring Process & Asset Historians Systems **APPLICATIONS** Documentation and MES Monitoring Management & INFORMATION REPOSITORIES PROCESS CONTROL OFFICE DOMAIN DOMAIN abelia

The Role of the Semantic Model within the integration architecture

StatoilHydro TAIL-IO R&D Programme →F0B GODI Full Scale Pilot project context

Business Services IIFconstruct Exist apps / other svcs

IBM

IBM C&P Integrated Information Framework, extending IBM WebSphere

IOHN Activity 2 has the architecture focus

To establish a digital platform infrastructure across domains

Digital platform

Mission and scope

Integrated Operations in the High North – Joint Industry Project

Represent the Reference Semantic Model (RSM) in ISO15926

This scope: Represent in ISO15926 the scope of the Reference Semantic Model (RSM) currently exploited by the F0B/GODI (TAIL) project

Examples of challenges targeted by the RSM and the IIF framework

Integrated Operations in the High North – Joint Industry Project

- •Part of real time transactional integration platform
- •Access to information concerning the same object(s) even if the information is dispersed across many facilities and many applications
- •An instance model providing a naming context for measurements across facilities

IOHN

Reference Semantic Model

- An integrating information model for the oil & gas industry

Integrated Operations in the High North – Joint Industry Project

Dr. Udo Pletat

Senior Certified IT Specialist IBM Deutschland Research & Development GmbH pletat@de.ibm.com

 \mathbf{OH}

- Why the Reference Semantic Model
- Main elements of Refence Semantic Model
- Summary

Main aspects of the Reference Semantic Model

- Supports information needs of different applications
- Is a blend of different information model standards like ISA S88, S95, MIMOSA, ISO 15926
- The RSM is
 - defined as a UML meta-model
 - implemented as a relational database for storing model instance data

OH

Clarifying terms and how they are used in RSM and ISO 15926 **IOHN** Integrated Operations in the High North – Joint Industry Project Ontology С R Α CI RI Language **RSM ISO 15926** Meta-Model С R С R А Α CI RI Model-Instance(s) CI RI **UML+SQL OWL**

C = class, R = relation, A = axiom, CI = class instance, RI = relation instance

Semantics for RSM: by translation into ISO 15926

Why the term , Reference Semantic Model'?

- Reference Semantic Model aims at
 - richer content quantity =/= higher content quality through
 - expanding the industry domain modeling scope
 - unification of relevant information models like S95, S88, MIMOSA
 - richer content quantity =/= higher content quality through
 - Reviews of UML master model
 - (semantics-defining) transformation to ISO 15926
 - exploiting semantics of OWL used as modeling language for ISO 15926

Integrated Operations in the High North – Joint Industry Project

• Why a Reference Model

• Main elements of Refence Semantic Model

• Summary

Standards around RSM and IIF

Standards around RSM and IIF

RSM main package collection

E ISA_Common_PKG	ISA88_Part_2_PKG	ISO1592	6_PKG	PKG	G COPENGIS_PKG	CEFACT_PKG
□ ISA95_Part_2_PKG	☐ ISA88_Part_4_PKG					
☐ ISA95_ to_ISA88_PKG	ISA88_Enumerations					
☐ IS95_Enumerations				Classes	Enumerations	Literals
			RSM	182	19	~ 100
RSM_Common_PKG	E RSM_Assets_PKG	🗀 RSM_Docu	ISA S88	30	5	~ 100
			ISA S95	89	15	~ 100
			ISO 15926	4	0	0
🖿 RSM_CodeType_PKG	RSM_Transactions_PKG	E RSM_				
			MIMOSA	20	1	3
			OPENGIS	38	6	~ 50
			UNCEFACT	2	3	~ 800
			Total	365	49	1208

Key aspects of O&M for oil & gas enterprises in RSM

Integrated Operations in the High North – Joint Industry Project

IOHN

- Currently most exploited parts of RSM
- Main areas of RSM subject for ISO 15926 alignment
- Alignment means
 - Position RSM more precisely in the ISO 15926 ontology
 - ➔ RSM classes as subclasses of ISO 15926 classes
 - Import equipment classifications from ISO 15926 into RSM
 - → ISO 15926 classes as subclasss of RSM classes
 - ➔ ISO 15926 classes as instances of RSM classes

Functional enterprise structure

- Objectives of the RSM and ISO 15926 alignment effort
 - The intended representation aimed at capturing
 - the functional entities in an enterprise
 - the accountable assets including a view of the physical specimen
 - Unify RSM, ISA, ISO 15926, and MIMOSA terminology
 - Capture a notion of connectivity between functional entities
 - Simplify RSM modeling to eliminate redundancies
 - Adapt the ,TypeOf...' representations for better alignment with ISO 15926

Functional enterprise structure

ISO 15926-to-RSM alignment for functional entities

Integrated Operations in the High North – Joint Industry Project

IOHN

The ,TypeOf...' construction - I

- In the RSM there are many different types of
 - OrganizationalEntity
 - FunctionalEntity
 - Asset
 - . . .
- In ISO 15926 those types of ... are represented as classes in the meta-model
- Adopting this approach for RSM
 - is highly highly interesting, since it allows for exploiting ISO 15926 equipment classification
 - has to be done with care, because, e.g.,
 - ISO 15926 has 10.000+ equipment types represented as OWL classes
 - Representing each such OWL class per equipment type as a UML class in RSM would lead to 10.000+ sparsely populated DB tables

- instances vs subclasses – original RSM approach

- instances vs subclasses – original ISO 15926 approach

abelia

- instances vs subclasses recommendation

- instances vs subclasses as recommended

The ,TypeOf...' construction - II

- Adopting the ISO 15926 modeling approach strictly for RSM, the equipment types are subclasses of RSM_WorkEquipment
- The chosen approach for RSM 2.0 is more flexible in the sense of
 - Modeling the ISO 15926 equipment type hierarchy through RSM classes ,down to a reasonable' level of detail
 - ➔ if large numbers of certain equipments suggest separate tables per equipment type
 - Modeling ISO 15926 equipment types as instances of class
 DOM, Type Of Mark Equipment
 - RSM_TypeOfWorkEquipment
 - ➔ if small numbers of certain equipment types suggest a single table for equipment of different types

Overview

- Why a Reference Model
- Background Reference Semantic Model
- Main elements of the Refence Semantic Model
- Summary

Two interesting threads to bring RSM forward

- Gain acceptance for RSM through established standardization bodies
 - The standards integration approach of RSM considered meaningful
- Expand the scope of RSM to provide improved integration support through IIF
 - Understand integration and information model alignment needs along the processing chain

RSM and its parent standards

Integrated Operations in the High North – Joint Industry Project

- Parent standards are established as industry standards
- RSM is not yet standardized
- Its nature as a mesh-model combining other standards implies
 - Portions of RSM ,close enough' to parent standard could be standardized by the organization owning the parent standard
 - Standardizing RSM may also trigger parent organizations cross-accepting other standard's models

IOH

Standardize RSM

- ➔ to obtain acceptance of RSM based applications by POSC Caesar and ISO
- → to assure better interoperability with systems based on RSM parent standards

Number of existing standards prohibitively high to incorprate all of them into RSM

Integrated Operations in the High North – Joint Industry Project

ISO Standards for use in the oil & gas industry

IOH

Standards around RSM and IIF

Integrated Operations in the High North – Joint Industry Project

,To absorb' or ,Not to absorb'?

Integrated Operations in the High North – Joint Industry Project

- (Partially) absorbed parent standards
 - Allow for simpler transformation between IIF and applications relying on parent standard
 format transformation in adapters
 - ,Absorption' means static model alignment
- Non-absorbed (further) parent standards
 - Require more complex transformations
 model transformation inside adapters
 - ,Non-absorption' requires dynamic model transformation
- Expand parents standard integration for applications that exchange information with IIF at the bottom of the event processing pyramid
 good candidates are PRODML/WITSML

OH

Exploitation and evolution of RSM

- StatoilHydro TAIL project
 - Gain practical experience and prove applicability
- Streamline RSM content and align with ISO 15926
 - Gain acceptance through established standardization bodies
- Absorb elements from further standards
 - Assure wider scope of usage

Alignment to ISO 15926

Integrated Operations in the High North – Joint Industry Project

Johan W. Klüwer Principal Specialist DNV

IOHN Activity 3 overall objective

Integrated Operations in the High North – Joint Industry Project

Seismic and Reservoir

Based on requirements from the pilot projects and project participants:

- Extend and improve the content and quality of the ISO 15926 Reference Data Library (RDL)
- Develop a prototype information validation service

ISO 15926 – Integration of life-cycle data for process plants including oil and gas production facilities.

'RSM in ISO 15926' means two things

Integrated Operations in the High North – Joint Industry Project

- The RSM UML model in ISO 15926 Reference Data Library
 - Represented as an ISO 15926 ontology
 - RSM classes are mainly specializations of O&M, P&R classes
- Export/import data between IIF/RSM systems and ISO 15926 format
 - RSM content provided with RDL classification
 - On demand production of exchange-friendly instance data

RSM model in the ISO 15926 RDL hierarchy

Integrated Operations in the High North – Joint Industry Project

🗹 FSi

- Domain-specific parts of the PCA RDL depend on generic parts
- RSM classes specialize RDL classes from the IOHN Activity 3 information scope
- The RSM model representation effort introduced new classes to the RDL

Work carried out in IOHN Activity 3

- IOHN
- Modelling using Protégé OWL workbench and Rational Software Architect
- RSM UML model entities represented as RDL classes and relations
- Complex mappings expressed in ISO 15926-7 templates
- Mappings tested using Template Expander tool
- The RSM classes uploaded to the RDL

Three generic levels of data alignment

Integrated Operations in the High North – Joint Industry Project

- Dictionary: Explanation
 - apply reference definition to things
- Taxonomy: Aggregation
 - generic/specific categories of things
- Ontology: Relation
 - identify things that are related in various ways

Current classification isn't uniform **IOHN** Integrated Operations in the High North – Joint Industry Project **RSM** table Site 1 'Separator vann' **RSM** table Site 2 #Sv1 'Water separator' #.. #Ws2 #Cs1 'Test separator' #.. #.. 'Gas turbine' #Gt1 #..

Si FSi

abelia

Dictionary alignment: Apply common terminology

Taxonomy alignment: Discover additional knowledge

Ontology alignment Knowledge discovery along arbitrary dimensions

Mapping complex patterns

- Several constructions in the RSM scope require information assemblies of more than one element
 - E.g. Connections, measurements, properties
 - For a meaningful interpretation, several pieces of information have to be considered together.
 - The dictionary, taxonomy, ontology alignment levels apply also to patterns of information
- RSM and ISO 15926 represent things differently

ISO 15926 Templates

- Part 7 is a new addition to ISO 15926
- A template captures a pattern for stating facts
- Signature Rule (Axiom):
 - The template signature specifies the input arguments
 - The template rule specifies what statement is made, expanding to explicit ISO 15926 format
 - Template rules allow for interpretation as firstorder logic axioms

Example: Connections

Integrated Operations in the High North – Joint Industry Project

🚽 FSi

- Typical information in an RSM database: A generator is connected to power a fan.
- The general case is: Pieces of equipment are connected.
- We want to present such connection information in the ISO 15926 space as well.

Connections in RSM

Integrated Operations in the High North – Joint Industry Project

We need to consider the RSM classes

- Functional Entity
- Connection Point
- Connection Node and relations between them.

Connections in ISO 15926

Integrated Operations in the High North – Joint Industry Project

We need to consider the ISO 15926 entity types

- ArrangedIndividual
- FeatureWholePart
- ConnectionOfIndividual and relations.

Alignment: Connections

Connections: RSM representation

Integrated Operations in the High North – Joint Industry Project

- •There are two pieces of equipment, *A* and *B*.
- •There is a connection *N* between *A* and *B*.
- •Connection points *CA*, *CB* represent equipment parts that participate in the connection
- •N is the connection itself

Template signature: Input arguments

Integrated Operations in the High North – Joint Industry Project

RSMFunctionalEntityConnection			
#	Role	Туре	
1	Entity 1	ArrangedIndividual	
2	Entity 2	ArrangedIndividual	
3	Conn. pt. 1	ArrangedIndividual	
4	Conn. pt. 2	ArrangedIndividual	
5	Connection	ConnectionOfIndivi dual	

This signature defines a table for recording RSM connections.

abelia

Rule: The ISO 15926 representation pattern

Integrated Operations in the High North – Joint Industry Project

ISO 15926-7 template signature:

RSMFunctionalEntityConnection		
1	Entity 1	ArrangedIndividual
2	Entity 2	ArrangedIndividual
3	Conn. pt. 1	ArrangedIndividual
4	Conn. pt. 2	ArrangedIndividual
5	Connection	ConnectionOfIndividual

ISO 15926-7 template rule:

abelia

RSMFunctionalEntityConnection
(x1, x2, x3, x4, x5) <->
ArrangedIndividual(x1) &
ArrangedIndividual(x2) &
ArrangedIndividual(x3) &
ArrangedIndividual(x4) &
ConnectionOfIndividual(x5) &
<pre>FeatureWholePartTemplate(x3, x1) &</pre>
<pre>FeatureWholePartTemplate(x4, x2) &</pre>
<pre>DirectConnectionTriple(x5, x3, x4) .</pre>

Template expansion

The connection in ISO 15926-2

Integrated Operations in the High North – Joint Industry Project

OWL representation

Another complex mapping: Measurements

Integrated Operations in the High North – Joint Industry Project

RSM model in RDL: Advantages

- We obtain a standardized representation of the model
- Documentation of the system structure is openly available
- Users and independent software vendors can investigate the model for alignment and integration

RSM data in ISO 15926: Advantages

- IOHN
- Dictionary alignment. Apply common terminology
- Taxonomy/ontology alignment. Discover additional knowledge
- Data quality. Content from various OPC sources is given a standard classification
- Integration. ISO 15926/reference data content is suitable for exchange
- Applications. The OWL/RDF format makes content available for semantic tools

Thank you!

