Linking data without common identifiers

ISO 15926 and Semantics Conference, Sogndal, 2013-09-06 **Lars Marius Garshol**, larsga@bouvet.no http://twitter.com/larsga

Entity resolution

Record linkage

Identity resolution Data matching

Masker daka noeduplication nanagement

Mergelpurge

The problem

• How to tell if two different records represent the same real-world entity?

DBPEDIA		
Id	http://dbpedia.org/resource/Samoa	
Name	Samoa	
Founding date	1962-01-01	
Capital	Apia	
Currency	Tala	
Area	2831	
Leader name	Tuilaepa Aiono Sailele Malielegaoi	

MONDIAL	
Id	17019
Name	Western Samoa
Independence	01 01 1962
Capital	Apia, Samoa
Population	214384
Area	2860
GDP	415

Linking across datasets

- Independent applications, for example
 - even when unique identifiers exist, they tend to be unreliable, or missing

Within datasets

- Duplicate records in the same application
 - in different tables (poor modelling)
 - in the same table (poor UI, poor logic, sloppy entry)

Any non-trivial database contains duplicates!

In data interchange

- Receiving data from third parties
 - do we have this record already?

A difficult problem

- It requires $O(n^2)$ comparisons for n records
 - a million comparisons for 1000 records, 100 million for 10,000, ...
- Exact string comparison is not enough
 - must handle misspellings, name variants, etc
- Interpreting the data can be difficult even for a human being
 - is the address different because there are two different people, or because the person moved?

•

Record linkage

- Statisticians very often must connect data sets from different sources
- They call it "record linkage"
 - term coined in 1946¹⁾
 - mathematical foundations laid in 1959²⁾
 - formalized in 1969 as "Fellegi-Sunter" model³⁾
- A whole subject area has been developed with well-known techniques, methods, and tools
 - these can of course be applied outside of statistics

^{1) &}lt;a href="http://ajph.aphapublications.org/cgi/reprint/36/12/1412">http://ajph.aphapublications.org/cgi/reprint/36/12/1412

²⁾ http://www.sciencemag.org/content/130/3381/954.citation

^{3) &}lt;a href="http://www.jstor.org/pss/2286061">http://www.jstor.org/pss/2286061

The basic idea

Field	Record 1	Record 2	Probability
Name	acme inc	acme inc	0.9
Assoc no	177477707		0.5
Zip code	9161	9161	0.6
Country	norway	norway	0.51
Address 1	mb 113	mailbox 113	0.49
Address 2			0.5

0.931

Standard algorithm

- n^2 comparisons for n records is unacceptable
 - must reduce number of direct comparisons

Solution

- produce a key from field values,
- sort records by the key,
- for each record, compare with *n* nearest neighbours
- sometimes several different keys are produced, to increase chances of finding matches

Downsides

- requires coming up with a key
- records may match even if the keys do not

String comparison

Measure "distance" between strings

- must handle spelling errors and name variants
- must estimate probability that values belong to same entity despite differences

Examples

- John Smith ≈ John Smith
- J. Random Hacker ≈ James Random Hacker

Many well-known algorithms have been developed

- no one best choice, unfortunately
- some are eager to merge, others less so

Many are computationally expensive

- $-O(n^2)$ where *n* is length of string is common
- this gets very costly when number of record pairs to compare is already high

Duke

 ${f D}{f U}$ plicate ${f K}$ ill ${f E}$ r

Context

- Doing a project for Hafslund where we integrate data from many sources
- Entities are duplicated both inside systems and across systems

Requirements

Must be flexible and configurable

 no way to know in advance exactly what data we will need to deduplicate

Must scale to large data sets

- CRM alone has 1.4 million customer records
- that's 2 trillion comparisons with naïve approach

Must have an API

- project uses SDshare protocol everywhere
- must therefore be able to build connectors

Must be able to work incrementally

process data as it changes and update conclusions on the fly

Existing tools

Commercial tools

- big, sophisticated, and expensive
- seem to follow the same principles
- presumably also effective

Open source tools

- generally made by and for researchers
- nice user interfaces and rich configurability
- advanced maths
- architecture often not as flexible as it could be

Duke

- Java deduplication engine
 - released as open source
 - http://code.google.com/p/duke/
- Does not use key approach
 - instead indexes data with Lucene
 - does Lucene searches to find potential matches
- Still a work in progress, but
 - high performance,
 - several data sources and comparators,
 - being used for real in real projects,
 - flexible architecture

How it works

Cleaning of data

- Used to normalize data from sources
 - necessary to get rid of differences that don't matter
- Makes comparing much more effective
 - pluggable in Duke
 - utilities and components already provided

Components

Data sources

- CSV
- JDBC
- Sparql
- NTriples
- <plug in your own>

Backends

- Lucene
- Naïve in-memory
- Own search engine

Comparators

- ExactComparator
- NumericComparator
- SoundexComparator
- Levenshtein
- Weighted Levenshtein
- JaroWinkler
- Dice coefficient
- Geoposition
- QGramComparator
- <plug in your own>

Other features

- Fairly complete command-line tool
 - with debugging support
- Very flexible API for embedding
 - everything is pluggable, from comparators to data sources to backends
- Incremental processing
- Multi-threaded
- APIs for working with collected matches

Two modes

Probabilities weigh all the evidence

Field	Record 1	Record 2	Probability	Accum.
Name	acme inc	acme inc	0.9	0.9
Assoc no	177477707		0.5	0.9
Zip code	9161	9161	0.6	0.931
Country	norway	norway	0.51	0.934
Address 1	mb 113	mailbox 113	0.3	0.857
Address 2			0.5	0.857

Probabilities combined with Bayes Theorem

Probabilities reduced if values don't match exactly

Linking Mondial and DBpedia

A real-world example

Finding properties to match

- Need properties providing identity evidence
- Matching on the properties in bold below
- Extracted data to CSV for ease of use

DBPEDIA		
Id	http://dbpedia.org/resource/Samoa	
Name	Samoa	
Founding date	1962-01-01	
Capital	Apia	
Currency	Tala	
Area	2831	
Leader name	Tuilaepa Aiono Sailele Malielegaoi	

MONDIAL	
Id	17019
Name	Western Samoa
Independence	01 01 1962
Capital	Apia, Samoa
Population	214384
Area	2860
GDP	415

Configuration – data sources

```
<group>
                                                        <group>
 <csv>
                                                          <csv>
  <param name="input-file" value="dbpedia.csv"/>
                                                           <param name="input-file" value="mondial.csv"/>
  <param name="header-line" value="false"/>
                                                           <column name="id" property="ID"/>
  <column name="1" property="ID"/>
                                                           <column name="country"
  <column name="2"
                                                               cleaner="no.priv...examples.CountryNameCleaner"
     cleaner="no.priv...CountryNameCleaner"
                                                               property="NAME"/>
                                                           <column name="capital"
     property="NAME"/>
  <column name="3"
                                                               cleaner="no.priv...LowerCaseNormalizeCleaner"
     property="AREA"/>
                                                               property="CAPITAL"/>
  <column name="4"
                                                           <column name="area"
     cleaner="no.priv...CapitalCleaner"
                                                               property="AREA"/>
     property="CAPITAL"/>
                                                          </csv>
 </csv>
                                                         </group>
</group>
```

Using groups tells Duke that we are linking across two data sets, not deduplicating by comparing all records against all others

Configuration – matching

```
<schema>
 <threshold>0.65</threshold>
                                                    Duke analyzes this setup and decides
                                                    only NAME and CAPITAL need to be
 cproperty type="id">
                                                    searched on in Lucene.
  <name>ID</name>
 cproperty>
  <name>NAME</name>
  <comparator>no.priv.garshol.duke.Levenshtein</comparator>
  <low>0.3</low>
  <high>0.88</high>
 cproperty>
  <name>AREA</name>
  <comparator>AreaComparator/comparator>
  <low>0.2</low>
                                                <object class="no.priv.garshol.duke.NumericComparator"</pre>
                                                    name="AreaComparator">
  <high>0.6</high>
                                                 <param name="min-ratio" value="0.7"/>
 </object>
 cproperty>
  <name>CAPITAL</name>
  <comparator>no.priv.garshol.duke.Levenshtein</comparator>
  <low>0.4</low>
  <high>0.88</high>
 </schema>
```

Result

- Correct links found: 206 / 217 (94.9%)
- Wrong links found: 0 / 12 (0.0%)
- Unknown links found: o
- Percent of links correct 100.0%, wrong 0.0%, unknown 0.0%
- Records with no link: 25
- Precision 100.0%, recall 94.9%, f-number
 0.974

Examples

Field	DBpedia	Mondial
Name	albania	albania
Area	28748	287 <mark>50</mark>
Capital	tiran <mark>a</mark>	tirane
Probability	0.980	

Field	DBpedia	Mondial
Name	kazak <mark>h</mark> stan	kazakstan
Area	2724900	2717300
Capital	astana	almaty
Probability	0.838	

Field	DBpedia	Mondial
Name	côte d'ivoire	cote divoire
Area	322460	322460
Capital	yamoussoukro	yamoussoukro
Probability	0.975	

Field	DBpedia	Mondial
Name	grande comore	comoros
Area	1148	2170
Capital	moroni	moroní
Probability	0.440	

Field	DBpedia	Mondial
Name	samoa	western samoa
Area	2831	2860
Capital	apia	apia
Probability	0.824	

Field	DBpedia	Mondial
Name	serbia	serbia and mont
Area	102350	88361
Capital	sarajevo	sarajevo
Probability	0.440	

Western Samoa or American Samoa?

Field	DBpedia	Mondial	Probability
Name	samoa	western samoa	0.3
Area	2831	2860	0.6
Capital	apia	apia	0.88
Probability			0.824

Field	DBpedia	Mondial	Probability
Name	samoa	american samoa	0.3
Area	2831	199	0.4
Capital	apia	pago pago	0.4
Probability			0.067

An example of failure

- Duke doesn't find this match
 - no tokens matching exactly
 - Lucene search finds nothing

Field	DBpedia	Mondial
Name	kazak <mark>h</mark> stan	kazakstan
Area	2724900	2717300
Capital	astana	almaty
Probability	0.838	

- Detailed comparison gives correct result
 - the problem is Lucene search
- Lucene does have Levenshtein search, but
 - in Lucene 3.x it was very slow
 - therefore not enabled yet
 - thinking of adding option to enable where needed
 - Lucene 4.x has fixed the performance problem

Usage at Hafslund

Duke in real life

The big picture

Experiences so far

- Incremental processing works fine
 - links added and retracted as data changes
- Performance not an issue at all
 - − despite there being ~1.4 million records
 - requires a little bit of tuning, however
- Matching works well, but not perfect
 - data are very noisy and messy
 - biggest issue is clusters caused by generic values
 - also, matching is *hard*

Other known users

- Yoxel Portal
 - commercial cloud CRM offering
- Cityhotels.com
 - online hotel booking portal
- Easyrec
 - online recommendation engine
- More
 - there are more, but they haven't wanted to be explicitly identified

Recent work on Duke

Version 1.1 is coming

- adds genetic algorithm to help users create configurations
- uses active learning so people don't need test data
- also adds performance profiling to make it easier to debug performance issues

Much, much more work in the pipeline

- tools for working with found matches
- experiments on how to cluster matching pairs into equivalence classes
- try different backends

Comments/questions?

Slides will appear on http://slideshare.net/larsga

