

The Data Model

Tutorial Overview

The Data Model

- Fundamental Concepts
- The EXPRESS Modeling Language
- The Basic Classes of 15926
- Types of Reference Data Classes

Class Hierarchy

Source Material and Accessories

- Part 2 can be bought from ISO as a pdf file.
 - Navigate to http://iso.org and search for ISO 15926
- An overview of Part 2 can be found at <u>http://ht.vestforsk.no/demo/iso15926/</u>
- The EXPRESS code and the EXPRESS diagrams of Part 2 can be found at <u>http://www.tc184-sc4.org/wg3ndocs/wg3n1328</u>

Tutorial Overview

- The Data Model
 - Fundamental Concepts
 - Class
 - Relationship
 - Entity types, classes and objects
 - The EXPRESS Modeling Language
 - The Basic Classes of 15926
 - Types of Reference Data Classes

Two fundamental concepts

Class

- Pump The collection of all pumps
- **Bicycle** The collection of all bicycles
- **Pebbles** The collection of all pebbles

Relationship

- HusbandOf The relationship between a man and his wife
- **ConsistsOf** The relationship between e.g. a pump and its parts

Fundamental Concepts: Class

Class

- A collection of objects.
- The objects in such a collection are called *members* of the class
- A class is an abstraction:
 - You can have a pile of pebbles and a class of the same pebbles.
 Dispersing the pebbles will distroy the pile, but the class remains the same.
- A class is also an object, and can therefore ...
 - be a member of a class
 - be related to other objects

Classes and Classifying Concepts

- By a classifying concept we mean a concept which holds, or is true of, objects.
 - "is a car"
- The collection of things that the concept is true of forms a class.
 - "the class of all cars"
- The principle of extensionality for classes:
 - "If two classes have the same members, they are the same class."
- Classifying concepts are <u>intentional</u>: Two concepts can be true of the same things.
 - "is a creature with heart" and "is a creature with kidney"
- Are 15926 classes Classes or classifying concepts?
 - For our purposes, it makes little difference

Two Important Notions

Inclusion

Inclusion

Fundamental Concepts: Relationship

A relationship is something that holds of or between two objects.

Relationships are also objects, and can be used in other relationships and be members of classes.

Fundamental Concepts: Relationship, cont.

- A concept with two entries corresponds to a Class of Relationship
 - ... is a resident of ...
 - A Relationship on the other hand, corresponds to a sentence: Jennifer is a resident of Norway
- Instead of connecting two objects, a class of relationship connects two classes

Part 2 vs. Reference Data

Entity Types, classes and objects.

- There is a 'syntactical' difference between classes of Part 2, and every other type of class in the ISO15926 standard:
- Classes in Part 2 are modelled as *entity types* in the language EXPRESS.
 - Entity types are only classes, they cannot be a member of any other class, and not be related to any entity.
- Every class not in Part 2 are entities, sometimes also called objects. This is because they are inevitably members of at least one entity type.
 - Entities may be classes, but they are *always* objects. This means they can be members of classes, and related to other objects.

Tutorial Overview

The Data Model Fundamental Concepts The EXPRESS Modeling Language The Basic Classes of 15926 Types of Reference Data Classes

EXPRESS

- Standardized as part of the STEP standard (ISO 10303)
- Data modeling language
- The EXPRESS-G notation will be used to visualize EXPRESS models. (Such as 15926-2)
- We will limit our discussion to features of EXPRESS used in ISO15926-2

Entity type

- Specification of a type of data
- Consists of
 - Name
 - Attribute(s)
 - Subtype and Supertype declarations

ENTITY F	er	son
name	:	STRING
mother	:	Woman;
END_ENTI	TY	

Attributes

- Built-in types
 - STRING, INTEGER, BOOLEAN, etc
- Entity types:
 - An entity type defined elsewhere in the data model
- Aggregate types:
 - A list where all elements are of the same type.
- Optional attributes.

ENTITY Pers	son			
name	:	STRING;		
age	:	INTEGER;		
mother	:	OPTIONAL	Woman;	
END_ENTITY				

The EXPRESS-G notation

EXPRESS

ENTITY Person

- name : STRING;
- age : INTEGER;
- mother : OPTIONAL Woman;

END_ENTITY

EXPRESS-G

Type Hierarchy

- Entity types in a data model are usually organized in a type hierarchy.
- A subtype inherits all the attributes of its supertype.

Hierarchy Restrictions

ONEOF – disjoint entity types

An **A** cannot be both a **B** and a **C**

Hierarchy Restrictions

ANDOR – possible overlaping entity types

An **A** may be either a **B** or a **C**, both or neither.

Hierarchy Restrictions

ANDOR – possible overlaping entity types

An **A** must be one of **B** or **C**, or both.

Tutorial Overview

The Data Model

- Fundamental Concepts
- The EXPRESS Modeling Language

The Basic Classes of 15926

- Thing
- Possible Individual
- Abstract Object: Class
- Abstract Object: Relationship

Types of Reference Data Classes

Thing

- The top class of 15926 is Thing
- All 15926 objects are *Thing*s
- All 15926 classes are subclasses of *Thing*, exept *Thing* itself.

Examples of things:

- The French Revolution
- Barack Obama
- 152 kilometers
- π (pi)
- The class of all pumps

Possible Individual

- All physical things
- All things bound by space or time
 - Includes past and future objects
- Considered as four dimensional space-time regions

Possible Individual in space time

A Possible Individual in space time

A unique space time extension

Unique space time extension

Same thing through time and space

Gauge pressure transmitter

Serial number "2-783"

Scope of Possible Individual

- Things that actually exist, or have existed
- Things that are fictional or conjectured and possibly exist in the past, present or future
- The entirety of all space time (Universe)
- Things that are either all space for any time (time periods)
- Things where the time dimension is vanishingly small (events)
- Things that have a specific position, but zero extent in one or more space dimensions, such as points, lines, and surfaces.
- Temporal parts (states) of other possible individuals

Abstract Objects

Things that don't have a space or time extension

- Numbers
- Classes
- Relationships

Subtypes of Abstract Object

Subtypes of Abstract Object: Class

Class is the entity type of reference data classes.

• A reference data class is an object with entity type **Class**.

Examples of Classes

- Apple
- Green
- VLCC very large crude carriers
- Gauge pressure transmitter
- ASME B1.1 Bolt threads
- EN218 Gasoline
- SAE 20-40W Motor engine oil

Gauge Pressure Transmitter Class

Why is class important?

- Class enables us to describe common information once, as the class.
- In practice little information is recorded about individuals. Most design is about stating I want one of "them" or some of "that". "Them" or "that" is a class, often a manufacture's product.
- Specifications that enable compliance to be assessed are classes, a particular item can be judged against the criteria of membership of the class.
- Specification of classes based on criteria for membership is the basis for part piece assembly, mass production, and economies of scale.

a class that is a model entity type, where "id" is its identifier

Example Diagram

Exercise 1

Represent using a diagram

- that 2-783 is a possible individual
- that possible individual is an entity type
- that 2-783 is a gauge pressure transmitter
- that gauge pressure transmitter is a Class
- that Class is an entity type

More about Class

- Classes are universal, independent of time
- Change is handled by classification of temporal parts of 4D objects
- For a car that is repainted from red to blue, the 4D part when it is red is a member of the red class, and the blue 4D part is a member of the blue class.

Class membership is independent of time

Membership is constant

Subclasses of Abstract Object: Relationship

Subclasses of Abstract Object: Relationship

- A relationship is considered to be an abstract object.
- Relationships are given names, as are all *Thing*s. Moreover, they should always be classified by a *ClassOfRelationship*.
- Only classes of binary relationship are supported. More complex objects can be supported using MultidimensionalObject.

Subclasses of Relationship

- A Relationship has the pair of objects related as attributes of the relationship.
- Relationship has several subtypes:

Classification and Specialization

- Classification membership
- Specialization inclusion

- Why create new names for familliar relations?
 - There is a distinction between the data model (Part2) and the RDL (Part 4)
 - Classes in Part 2 are entity types
 - Classes in Part 4 are instances of the Class entity type
 - Every object in the RDL must be a member of at least one entity type of Part 2

Classification and Specialization, cont.

- An RDL class such as Pump is an object with a certain entity type (Class of arranged Individual)
- Because it is a class, it may have members, or enter into inclusion relationships.
- How to indicate these relationships?
- Answer: You record the required relationship as a new piece of reference data. In other words, you create a Relationship object.
- The Classification entity type contains the membership relationships
- The Specialization entity type contains the inclusion relationships

Classification relationship

Classification Relationship

- A Classification is a Relationship
- The first attribute, called "classified", is a **Thing**
- The second attribute, called "classifier" is a **Class**
- A Classification between a Thing and a Class says that the classified Thing is a member of the classifying Class

Classification Illustration

Example Diagram

- #1234 is a possible_individual
- #1234 is a pump
- pump is a class
- class in an entity type
- possible_individual is an entity type

Specialization Relationship

Specialization Relationship, cont.

- A specialization is a relationship between two classes that says that all members of the subclass are members of the superclass.
- Specialization is transitive. If A is a specialization of B and B is a specialization of C, then A is necessarily a specialization of C.

Specialization Example

a specialization relationship, the circle indicates the subclass

Exercise 2

- Rosemont manufacture a type of Gauge Pressure Transmitter know as 3051C
- Represent by means of a diagram
 - That 3051C is a class
 - That 3051Cs are Gauge Pressure Transmitters
 - Gauge Pressure Transmitter is a class
 - Class is an entity type

Transitivity

Specialization is transitive

All model 106-As are model 106s All model 106s are pumps All model 106-As are pumps

Transitivity, cont.

Classification is **not** transitive

My car is red Red is a colour My car is not a colour Red is class Colour is a class My car is not a class!

Composition Relationship

Says that something is a part of something else

Composition in Four Dimensions

#A is a part of #B and of #C

Composition Example

a relationship that is not a classification or specialization, role1 and role2 are the role names of the relationship

Diagrammatic Notation

Represent by means of a diagram the parts of 2-783.

Tutorial Overview

The Data Model

- **Fundamental Concepts**
- The EXPRESS Modeling Language
- The Basic Classes of 15926

Types of Reference Data Classes

- Class of Class
- Class of Relationship
- Class of Individual
 - Class of Arranged Individual
 - Property

Templates

Types of Class

Class of Class Examples

- Red is a class of individual, its members are possible individuals that are red, only possible individuals can be red.
- Colour is a class of class, the class Red is a member. The class Blue is another member of Colour. Individuals are not colours.
- **PolarBear** is a class of individual; Its members are individual polar bears.
- EndangeredSpecies is a class of class, where the class PolarBear is a member. It is the species that is endagered, not each and every polar bear.
- **Honda** is a class of individual, its members are all Hondas.
- <u>Car is a class of individual also.</u> The members of Car are individual cars.
 Honda is a specialization of Car. Every Honda is a car
- CarTypes is a class of class, the class Honda is a member. Individual cars are not car types.

Class of Individual and Class of Class

Class of Individual and Class of Class

Class of Relationship

Classes whose members are Relationships

Class of Composition membership

Composition example: Pumps and Impellers

 Represent by means of a diagram that all GPT-305Cs consist of a housing and a flange

Classes of Individual

Class of Arranged Individual

Increasing levels of aggregation

- The classes of arranged individual recognise increasing levels of arrangement, starting at the sub atomic level and finishing at the levels of biological material and functional objects.
- Each level consists of an aggregation of material of the level beneath

Aggregation illustration

The Property Entity Type

Property

- Property is a subtype of Class of Individual
- Examples of Properties
 - 400 Tonnes
 - 4ºF
- A Possible Individual is a member of a Property if and only if it "has" this property
 - "The Eiffel Tower is a member of the class "100000 tonnes"
- Every property is a member of a Class of Property
 - Weight
 - Temperature
 - Volume

Property and Class of Property

Property Quantification

Property Quantification

Indirect property

- An IndirectProperty is derived from doing some tests or calculations to determine its value (as opposed to it being a current measurement).
- A relationship between a **Property** and a **PossibleIndividual**.
- The nature of the IndirectProperty is defined by its classification by a ClassOfIndirectProperty

Indirect Property

- Example: The maximum allowable working temperature of an instrument is an indirect property, it is different from its current temperature.
- An indirect property is derived from doing some tests or calculations to determine its value (as opposed to it being a current measurement). This is what makes it indirect
- A relationship between a property and a possible individual.

The nature of the indirect property is defined by its classification by a class of indirect property.

A property is indirect when it does not directly apply to the possible individual it applies to, but is derived from some process.

Indirect property Model

Tutorial Overview

The Data Model Fundamental Concepts The EXPRESS Modeling Language The Basic Classes of 15926 Types of Reference Data Classes Templates

Templates

- Even simple statements become complex 15926 structures.
- "3051CG should have an ambient temperature between -40 to 80 degrees Celsius"

Complex 15926 Structure

Template Signature

Roles	Class	Type of Restriction	Measurement scale	Upper Bound	Lower Bound
Entity Types	CO Individual	CO CO Relationship	Scale	Arithmetic Number	Arithmetic Number
Example	3051CG Pressure Transmitter	Ambient Temperature	Celcius	80	-40

End user challenge: Filling out the template may require explicit information that is only implicitly given by the end user's documentation.